COMMITTENTE

Finanziato dall'Unione europea

NextGenerationEU

Comune di Vinci Piazza Leonardo da Vinci 29, Vinci 50059 RUP: Ing. Claudia Peruzzi

VINCI (FI)

NUOVA SCUOLA DELL'INFANZIA "STACCIA BURATTA"

PROGETTISTA

ST GRUPPO MARCHE Contrada Potenza, 11 62100 Macerata P.Iva 00141310433 Tel. +39 0733 492522 azienda certificata ISO 9001:2015 e ISO 14001:2015

Progetto Esecutivo

Elaborati Generali

RELAZIONE SUI MATERIALI

Repertorio/Posizione	2815/01
Data	Aprile 2021
Verificato da	AC

E-GA-4

Scala		
N.	Descrizione	Data
0	Prima Emissione	Apr 2021
1	Revisione	Apr 2021 Ago 2021
2		
3		
4		
5		
6		

ORDINE DEGLI INGEGNERI
DELLA PROVINCIA DI MACERATA
Dott. Ing. FABRIZIO CIOPPETTINI
MACERATA

a. civile cambientale

A incegnere à industriale c dell'informazione

Comune di Vinci (FI)

REALIZZAZIONE NUOVA SCUOLA DELL'INFANZIA "STACCIA BURATTA" NEL COMUNE DI VINCI (FI)

Progetto Esecutivo

RELAZIONE SUI MATERIALI

Realizzazione nuova scuola dell'infanzia "Staccia Buratta" nel Comune di Vinci (FI) RELAZIONE SUI MATERIALI

INDICE

1.	RELA	ZIONE SUI MATERIALI	. 3
	1.1.	Calcestruzzo strutturale:	3
		Acciaio per c.a.:	
	1.3.	Elementi in X-Lam.	
	1.4.	Solaio alveolare	
		Ancoraggio a terra strutture Xlam	
		Ancoraggio a terra strutture Xlam	
	1.7.	Staffa a trazione	۰.,
	1.8.	Staffa a taglio	
		Connettore per pannelli strutturali	
		Connettore aggancio solaio orizzontale/pannello verticale	
		Viti unioni legno/legno	

1. RELAZIONE SUI MATERIALI

1.1.Calcestruzzo strutturale:

La fornitura di calcestruzzo da utilizzare, accompagnata da regolare documento di trasporto da impianto dotato di FPC, dovrà avere le seguenti caratteristiche:

DESCRIZIONE

Classe di calcestruzzo	C28/35
Resist. Compressione cubetti R _{ck}	350 kg/cm ²
Classe di consistenza	S4
Classe di esposizione	XC2
Rapporto max acqua/cemento	0.60

Dosaggio minimo cemento (UNI 11104) 300 kg/cm³

Additivi

1.2. Acciaio per c.a.:

La fornitura di acciaio per conglomerato cementizio armato, garantito dalla ditta fornitrice a mezzo di relativi certificati di prova, dovrà avere seguenti caratteristiche:

DESCRIZIONE

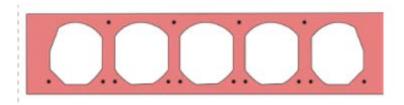
Tipo	B450C
Tensione caratteristica snervamento f_{yk}	≥ 4500 kg/cm ²
Tensione caratteristica rottura f _{tk}	≥ 5400 kg/cm ²
Allungamento (Agt)k	≥ 7.5 %
Rapporto sovraresistenza	$1.5\% \le f_{tk}/f_{Yk} \le 1.35\%$
Rapporto tensione effettiva/nominale $(f_y/f_{y,nom})_k$	≤ 1.25
Tensione di calcolo di snervamento	3913 kg/cm ²
Modulo elastico normale	2100000 kg/cm ²

1.3. Elementi in X-Lam

1.3.1.1. Parete:

• spessore totale 100 mm, costituita da lamelle spessore 20+20+20+20+20 in legno C24, densità 500kg/m³

1.3.1.2. Solaio:


• spessore totale 180 mm, costituita da lamelle spessore 40+30+40+30+40 in legno C24, densità 500kg/m³

Comportamento a solaio: sollecitazioni fuori piano	ETA 18/0303								
classe di resistenza tavola	6)			C24					
resistenza a flessione	f _{m,k}	ETA ⁵⁾ , W _{eff} ⁸⁾	k _{sys,EC5} f _{m,l,k} ^{3) 4)}	26,40	N/mm²				
resistenza a trazione parallela alla fibra	f _{t,0,k}	vedi comportamento	a parete						
resistenza a trazione perpendicolare alla fibra	f _{t,90,k}	EN 338, reduziert		0,12	N/mm²				
resistenza a compressione parallela alla fibra	f _{c,0,k}	vedi comportamento a parete							
resistenza a compressione perpendicolare alla fibra	f _{c,90,k}	EN 338 ¹⁾		2,50	N/mm²				
taglio parallelo alle fibre	f _{v, 090,k}	EN 338 ¹⁾		4,00	N/mm²				
taglio perpendicolare (rolling shear)	f _{v,9090,k}	ETA ⁵⁾ , A _{gross} ⁹⁾		1,20	N/mm²				
	_	5) . 8)							
modulo elastico medio parallelo alle fibre	E _{0,mean}	ETA ⁵⁾ , l _{eff} ⁸⁾	1,05 E _{0,1,mean}	11550	N/mm²				
modulo elastico medio perpendicolare alle fibre	E _{90,mean}	EN 338 ¹⁾		370	N/mm²				
modulo a taglio medio	G _{090,mean}	EN 338 ¹⁾		690	N/mm²				
modulo a rolling shear medio	G _{9090,mean}	ETA ⁵⁾		50	N/mm²				

Comportamento a parete: sollecitazioni nel piano			ETA 18/030	3				
classe di resistenza tavola			217 10/000	C24				
resistenza a flessione	f _{m,k}	ETA ⁵⁾ , W _{net} ¹⁰⁾	EN 338 ¹⁾	24,00	N/mm²			
resistenza a trazione parallela alla fibra	f _{t,0,k}	EN 338 ¹⁾		14,50	N/mm²			
resistenza a trazione perpendicolare alla fibra	f _{t,90,k}	vedi comportamento	a solaio					
resistenza a compressione parallela alla fibra	f _{c,0,k}	EN 338 ¹⁾		21,00	N/mm²			
resistenza a compressione perpendicolare alla fibra	f _{c,90,k}	vedi comportamento a solaio						
taglio parallelo alle fibre	f _{v, 090,k}	ETA ⁵⁾ , A _{net} ¹⁰⁾		2,30	N/mm²			
taglio perpendicolare (rolling shear)	f _{v,9090,k}	vedi comportamento a solaio						
modulo elastico medio parallelo alle fibre	E _{0,mean}	ETA ⁵⁾ , A _{net} ¹⁰⁾ , I _{net} ¹⁰⁾	1,05 E _{0,1,mean}	11550	N/mm²			
modulo elastico medio perpendicolare alle fibre	E _{90,mean}	vedi comportamento	a solaio					
modulo a taglio medio	G _{090, mean}	ETA ⁵⁾ , A _{net} ¹⁰⁾		450	N/mm²			
modulo a rolling shear medio	G _{9090,mean}	vedi comportamento a solaio						
		4101						
densitá caratteristica	ρ_k	EN 338 ¹⁾²⁾	ρ_k	350	kg/mc			
densità media	P _{mean}	EN 338 ¹⁾²⁾	ρ _{mean}	420	kg/mc			

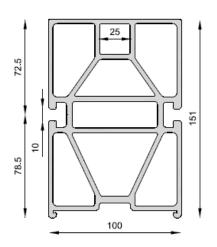
1.4. Solaio alveolare

	ABACO PORTATE UTILI SOLAIO R90 CONTINUITÀ																
	LUCI MA	AX (m)	7	8	9 1	0 1	1 1	2	13	14	15	16	17	18 1	9 20	0	PESO PROPRIO (KN/M²)
	(21.00	16.00	12.50	9.50	7.00	5.50	4.00	3.00	14	15	10	17	10 1	9 20	H26.5	3.00
CARICHI		24.00	20.00	16.30	13.20	10.50	8.20	6.50	5.00	3.80						H32	3.80
(KN/M²)			27.00	22.90	19.30	16.20	13.40	11.10	9.00	7.50	6.15	4.80	3.70			H36	4.05
					24.00	20.00	16.80	13.70	11.00	9.00	7.50	6.00	4.50	3.30	2.50	H40	4.30
							24.00	19.00	15.00	11.90	9.10	6.90	4.90			H50	5.40

NOTA: I carichi sono da considerarsi utili, cioè oltre il peso proprio del solaio. Il solaio è stato considerato senza soletta collaborante. In presenza dell'eventuale soletta da 4 - 6 cm il maggior peso è compensato dalla maggior portata, pertanto l'abaco dei carichi non cambia. Le luci di calcolo indicate prescindono dal rispetto della limitazione.

	ABACO PORTATE UTILI SOLAIO R90 APPOGGIO																
	LUCI M	AX (m)	7	8	9 1) 1 [.]	1 1	2 1:	3 1	4 1	5 1	16 1	7 1	8 1	9 20		PESO PROPRIO (KN/M²)
	21.00	15.00	11.50	8.50	6.50	5.00	350	2.00								H26.5	3.00
CARICHI	24.00	19.00	15.00	12.30	10.00	7.50	570	4.50	3.20	2.20						H32	3.80
(KN/M²)			22.00	18.20	15.00	12.20	980	7.80	6.00	4.80	3.80	2.80	2.00			H36	4.05
				23.00	18.00	14.50	1200	10.00	8.00	6.50	5.00	3.90	3.00	2.20	1.50	H40	4.30
					24.00	19.80	16.00	12.70	10.10	8.00	6.20	4.60	3.20			H50	5.40

1.5. Ancoraggio a terra strutture Xlam

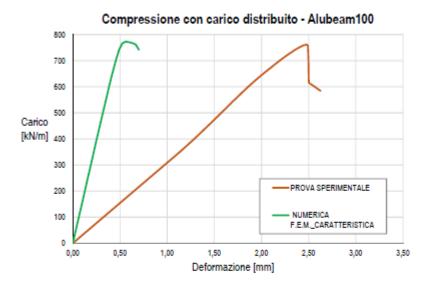

ALUBEAM100

Profilo in alluminio per l'ancoraggio alla base di pareti in legno

Componenti del sistema	Materiale
profilo estruso in alluminio	Alluminio EN AW-6060-T5
guarnizione adesiva a garanzia della posa corretta delle pareti e della tenuta all'aria	gomma EDPM

Utilizzo in classe di servizio 1 e 2

CARATTERISTICHE MECCANICHE


RESISTENZA A SCHIACCIAMENTO

Per la verifica delle prestazioni meccaniche del profilo ALUBEAM100 sono stati eseguiti dall'Università degli studi di Padova, dipartimento ICEA, studi specifici che hanno compreso simulazioni numeriche con programmi ad elementi finiti (FEM) e test sperimentali di laboratorio.

CARICO DISTRIBUITO (X-LAM)

Durante la campagna sperimentale è stata analizzata la configurazione di carico distribuito (che rappresenta il carico di una parete XLam), su un profilo di lunghezza 150 mm. I risultati ottenuti sono stati poi confrontati con quelli forniti dalle simulazioni numeriche, che vengono di seguito riportati.

	Valore a rottura Ruit,m	Valore caratteristico Rk*	Valore di progetto Ra**
Resistenza [kN/m]	761	533	485

^{*} Per il calcolo della resistenza caratteristica, è stato assunto un coefficiente correttivo kcorr=0,7.

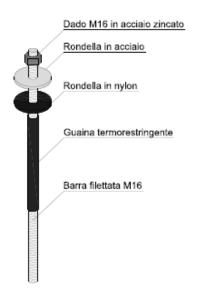
RESISTENZA A RIFOLLAMENTO

La resistenza a rifollamento è stata calcolata in accordo con quanto riportato al paragrafo §8.5.5 di EN 1999.1.1:2007, considerando come reagente la lama inferiore del profilo, di spessore 4 mm.

	Valore caratteristico Fb,Rk	Valore di progetto Fb,Rd***
Resistenza [kN]	32,0	25,6

^{***} Per il calcolo della resistenza di progetto, è stato assunto y₁₂=1,25 in accordo con EN 1999.1.1:2007.

^{**} Per il calcolo della resistenza di progetto, è stato assunto γ_M=1,10 in accordo con EN 1999.1.1:2007.



1.6. Ancoraggio a terra strutture Xlam

ALUFIX-HD

Barra filettata con funzione di tirafondo per ALUBEAM 100

COMPONENTI DEL SISTEMA
Barra filettata M16x400mm, acciaio classe 5.8
Guaina termorestringente nera (già applicata a ciascuna barra M16)
Dado esagonale M16 in acciaio zincato classe 8.8
Rondella in nylon, Φ interno 17mm, Φ esterno 40mm, spessore 3mm
Rondella in acciaio zincato, Φ interno 17mm, Φ esterno 40mm, spessore 3mm

CARATTERISTICHE MECCANICHE

LUNGHEZZA REAGENTE A TRAZIONE

La lunghezza di ancoraggio he viene calcolata come l'altezza della barra immersa nel calcestruzzo:

RESISTENZA A PUNZONAMENTO

Le analisi numeriche e sperimentali hanno evidenziato che la crisi del sistema, nel caso di trazione dovuta all'azione sismica, avviene per punzonamento della lama orizzontale di alluminio del profilo ALUBEAM100 in corrispondenza dell'appoggio della rondella. La resistenza a punzonamento viene allora calcolata secondo EC9 - part.1-1 §8.5.5:

$$B_{nBd} = 29,5 \text{ kN}$$

RESISTENZA A TAGLIO

La resistenza a taglio del tirafondo è stata valutata come il valore minore tra la resistenza a taglio F_{v,Rd} della barra, calcolata secondo D.M.14/01/2008 (NTC2008) §4.2.8 e la resistenza a rifollamento F_{b,Rd} sulla barra, calcolata quest'ultima rispetto alla lama di spessore 4mm secondo EC9 - part 1.1 §8.5.5:

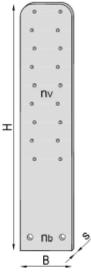
La resistenza rispetto alle azioni di taglio è da considerarsi, perciò, pari alla resistenza a rifollamento.

Nota per i progettisti: I valori di progetto delle resistenze dei tirafondi (carico ammissibile a trazione e a taglio) si consiglia in ogni caso di valutare i valori forniti dalle schede tecniche delle resine ancoranti fornite dai produttori delle stesse. La resistenza a trazione è il valore minore tra la resistenza a punzonamento del profilo ALUBEAM, la resistenza allo sfilamento del tirafondo e la resistenza a rottura del cono di calcestruzzo.

Il numero di barre di ancoraggio alla fondazione associate ad ogni elemento di connessione è specificato nella seguente tabella.

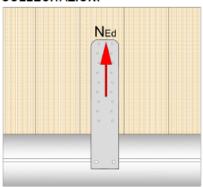
PIASTRA	SH18	HD28	HD56	HD23/SH18	HD40/SH18
N° BARRE	1	1	2	2	2

1.7.Staffa a trazione


ALUHD28

Staffa a trazione per l'ancoraggio di pareti in legno su AluBeam

Componenti del sistema	Materiale
n.1 Staffa ALUHD28	Alluminio EN AW-5754
n.1 sbarretta con 2 fori filettati	Alluminio EN AW-6082
n.2 bulloni autoforanti M8	Acciaio classe 8.8, zincatura a caldo


Utilizzo in classe di servizio 1 e 2

Codice	B [mm]	H [mm]	s [mm]	nb f9	nv f5
ALUHD28	80	375	5	2	18

SOLLECITAZIONI

RESISTENZA DI PROGETTO (LATO METALLO)

La resistenza di calcolo lato metallo, allo Stato Limite Ultimo della staffa ALUHD28, è calcolata sulla base delle seguenti assunzioni di progetto:

- · Risultante delle forze agenti passante per il baricentro del fissaggio sulla parete
- Coefficienti di sicurezza per i materiali:

- Alluminio rottura duttile (EN 1999-1-1 §6.1.3) γM1= 1,10 - Alluminio rottura fragile (EN 1999-1-1 §6.1.3) γM2= 1,25 - Bulloni (EN 1993-1-8 §2.2) γM2= 1,25

La verifica di resistenza della staffa si condurrà garantendo il rispetto della seguente disequazione:

$$N_{Ed} \le 28 \ kN$$

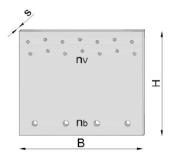
dove:

- NEd è la sollecitazione di trazione agente sulla staffa (SLU)

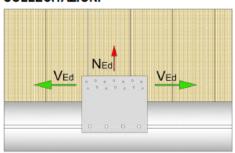
FISSAGGIO LATO LEGNO

		a [mm]
chiodo tipo Anker		4
viti per legno	(10000000000	4, 5

1.8.Staffa a taglio


ALUSH18

Staffa a taglio per l'ancoraggio di pareti in legno su AluBeam


Componenti del sistema	Materiale
n.1 Staffa ALUSH18	Alluminio EN AW-5754
n.1 sbarretta con 4 fori filettati	Alluminio EN AW-6082
n.4 bulloni autoforanti M8	Acciaio classe 8.8, zincatura a caldo

Utilizzo in classe di servizio 1 e 2

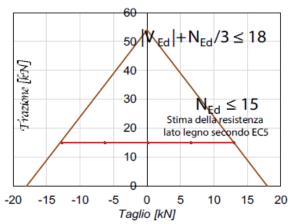
Codice	B [mm]	H [mm]	s [mm]	nb Φ9	nv Φ5
ALUSH18	200	174	5	4	14

SOLLECITAZIONI

RESISTENZA DI PROGETTO (LATO METALLO)

La resistenza di calcolo lato metallo, allo Stato Limite Ultimo della staffa ALUSH18, è calcolata sulla base delle seguenti assunzioni di progetto:

- Risultante delle forze agenti passante per il baricentro del fissaggio sulla parete
- · Coefficienti di sicurezza per i materiali:
- Alluminio rottura duttile (EN 1999-1-1 §6.1.3)
 yM1= 1,10
- Alluminio rottura fragile (EN 1999-1-1 §6.1.3) yM2= 1,25
- Bulloni (EN 1993-1-8 §2.2)


yM2 = 1,25

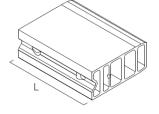
La verifica di resistenza della staffa si condurrà garantendo il rispetto della seguente disequazione:

$$\left|V_{Ed}\right| + \frac{N_{Ed}}{3} \le 18 \ kN$$

dove:

- VEd è la sollecitazione di taglio (SLU)
- NEd quella di trazione agenti sulla staffa (SLU)

FISSAGGIO LATO LEGNO


		d [mm]
chiodo tipo Anker		4
viti per legno	(1111111111111)	4, 5

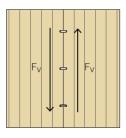
1.9. Connettore per pannelli strutturali

I SLOT

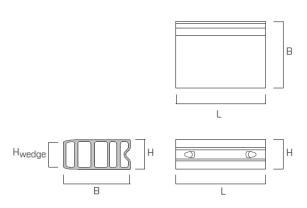
CONNETTORE PER PANNELLI STRUTTURALI

CODICE	L	
	[mm]	
SLOT90	120	10

MATERIALE E DURABILITÀ


SLOT: lega di alluminio EN AW-6005A. Utilizzo in classe di servizio 1 e 2 (EN 1955-1-1).

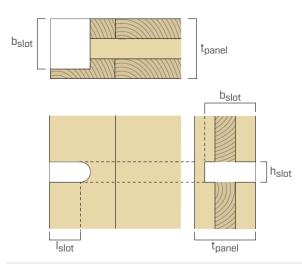
CAMPI D'IMPIEGO


- Pannelli X-LAM
- Pannelli in legno lamellare
- Pannelli in LVL softwood a sfogliati incrociati o paralleli
- Pannelli in LVL hardwood a sfogliati incrociati o paralleli

SOLLECITAZIONI

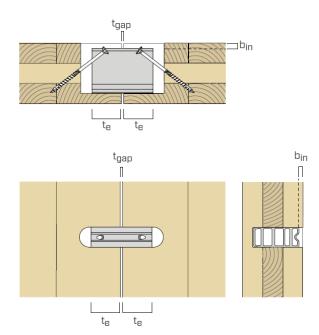
Sollecitazioni di taglio nel piano del pannello.

CONNETTORE



В	Н	H_{wedge}	L	n _{screws}
[mm]	[mm]	[mm]	[mm]	[pz.]
89	40	34	120	2

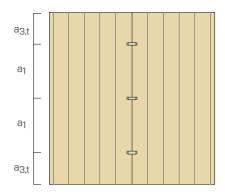
FRESATURA NEL PANNELLO


PANNELLO CON BORDO PIANO

b _{slot,min}	l _{slot,min}	^t panel,min	h _{slot} ⁽¹⁾
[mm]	[mm]	[mm]	[mm]
90	60	90	40 ± 0,5

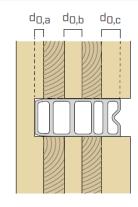
INSTALLAZIONE

PANNELLO CON BORDO PIANO



t _{gap,max} (2)	b _{in,max}	t _{e,min}
[mm]	[mm]	[mm]
5	t _{panel} -90 ⁽³⁾	57,5

DISTANZE MINIME

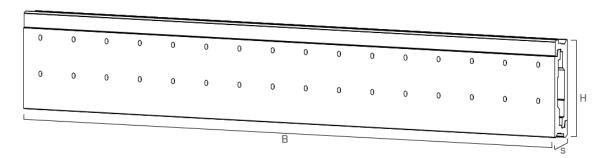

PARETE

		X-LAM	LV	legno lamellare		
			sfogliati incrociati	sfogliati paralleli		
a ₁	[mm]	320 ⁽⁴⁾	320 ⁽⁴⁾	480	480	
a _{3,t}	[mm]	320 ⁽⁴⁾	320 ⁽⁴⁾	480	480	

VALORI STATICI

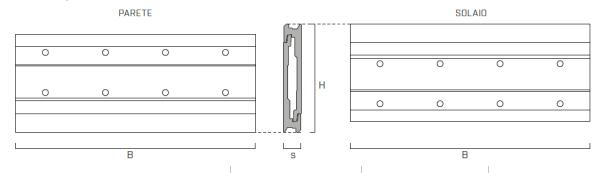
				R _{v,k}	k _{ser}		
				[kN]	[kN/mm]		
		40	[mm]	34,37			
	$\sum d_0^{(6)} =$	45	[mm]	37,81			
		49	[mm]	40,57			
		50	[mm]	41,26			
X-LAM (5)		55	[mm]	44,70	17,50		
		59	[mm]	47,46			
		60	[mm]	48,15			
		65	[mm]	51,59			
		69	[mm]	54,35			

 $\sum d_0 = d_{0,a} + d_{0,b} + d_{0,c}$



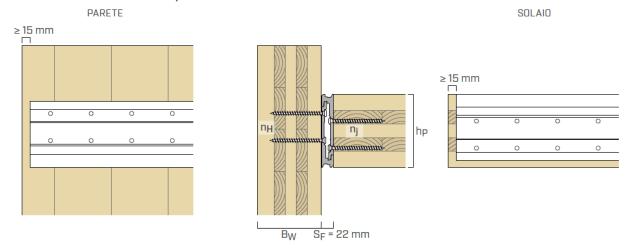
1.10. Connettore aggancio solaio orizzontale/pannello verticale

LOCK T TIMBER


CONNETTORE A SCOMPARSA AD AGGANCIO LEGNO-LEGNO

LOCK T FLOOR Ø7

CODICE	В		s	n _{screws} - ∅
	[mm]	[mm]	[mm]	
LOCKTFLOOR135	1200	135	22	64-Ø7

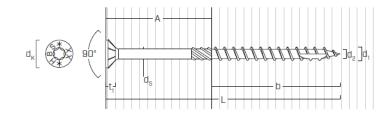

GEOMETRIA | LOCK T FLOOR

CONNET	TORE LOCK T FI	LOOR	VITI	PARETE	SOLAIO	
			LBS		h _{p,min}	
tipo	n° moduli ⁽²⁾	ВхНхѕ	n _H +n _j - ØxL	B _{W,min}		
		[mm]	[mm]	[mm]	[mm]	
LOCKTFLOOR135	1	300 x135 x 22	8+8 - Ø7x80			
LOCKTFLOOR135	2	600 x135 x 22	16+16 - Ø7x80	0.0	135 ⁽³⁾	
LOCKTFLOOR135	3	900 x135 x 22	24+24 - Ø7x80	80	155%	
LOCKTFLOOR135	4	1200 x135 x 22	32+32 - Ø7x80			

INSTALLAZIONE A VISTA | LOCK T FLOOR

LOCKT FLOOR PER X-LAM

CONNETTORE L	OCK T FLOOR	LEG	ALLUMINIO		
tipo	B x H x s [mm]	viti LBS n _H +n _j - ØxL [mm]	R _{v,timber,k} [kN] X-LAM ⁽⁷⁾	R _{v,alu,k} [kN]	
LOCKTFLOOR135	300 x 135 x 22	8+8 - Ø7x80	20,40	240,0	
LOCKTFLOOR135 600 x 135 x 22		16+16 - Ø7x80	40,79	480,0	
LOCKTFLOOR135	900 x 135 x 22	24+24 - Ø7x80	61,19	720,0	
LOCKTFLOOR135	1200 x 135 x 22	32+32 - Ø7x80	81,59	960,0	

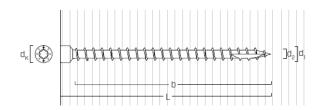


1.11. Viti unioni legno/legno

HBS

VITE A TESTA SVASATA

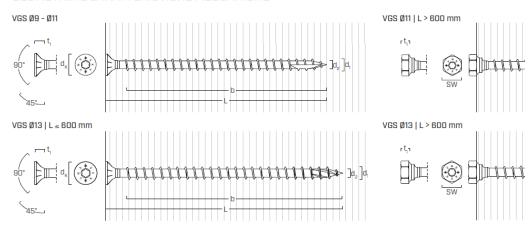
GEOMETRIA E CARATTERISTICHE MECCANICHE


Diametro nominale	d_1	[mm]	3,5	4	4,5	5	6	8	10	12
Diametro testa	d_K	[mm]	7,00	8,00	9,00	10,00	12,00	14,50	18,25	20,75
Diametro nocciolo	d_2	[mm]	2,25	2,55	2,80	3,40	3,95	5,40	6,40	6,80
Diametro gambo	d_S	[mm]	2,45	2,75	3,15	3,65	4,30	5,80	7,00	8,00
Spessore testa	t ₁	[mm]	2,20	2,80	2,80	3,10	4,50	4,50	5,80	7,20
Diametro preforo ⁽¹⁾	d_V	[mm]	2,0	2,5	2,5	3,0	4,0	5,0	6,0	7,0
Momento caratteristico di snervamento	$M_{y,k}$	[Nm]	2,1	3,0	4,1	5,4	9,5	20,1	35,8	48,0
Parametro caratteristico di resistenza ad estrazione ⁽²⁾	f _{ax,k}	[N/mm ²]	11,7	11,7	11,7	11,7	11,7	11,7	11,7	11,7
Densità associata	ρ_a	[kg/m³]	350	350	350	350	350	350	350	350
Parametro caratteristico di resistenza ad estrazione ⁽³⁾	$f_{ax,k}$	[N/mm ²]	15,0	15,0	15,0	15,0	15,0	15,0	15,0	15,0
Densità associata	ρ_{a}	[kg/m ³]	500	500	500	500	500	500	500	500
Parametro caratteristico di penetrazione della testa ⁽²⁾	f _{head,k}	[N/mm ²]	10,5	10,5	10,5	10,5	10,5	10,5	10,5	10,5
Densità associata	ρ_{a}	[kg/m ³]	350	350	350	350	350	350	350	350
Parametro caratteristico di penetrazione della testa ⁽³⁾	f _{head,k}	[N/mm ²]	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Densità associata	ρ_{a}	[kg/m³]	500	500	500	500	500	500	500	500
Resistenza caratteristica a trazione	f _{tens,k}	[kN]	3,8	5,0	6,4	7,9	11,3	20,1	31,4	33,9

VGZ

CONNETTORE TUTTO FILETTO A TESTA CILINDRICA

GEOMETRIA E CARATTERISTICHE MECCANICHE


Diametro nominale	d_1	[mm]	5,3	5,6	7	9	11
Diametro testa	d_K	[mm]	8,00	8,00	9,50	11,50	13,50
Diametro nocciolo	d_2	[mm]	3,60	3,80	4,60	5,90	6,60
Diametro preforo ⁽¹⁾	d_V	[mm]	3,5	3,5	4,0	5,0	6,0
Momento caratteristico di snervamento	$M_{y,k}$	[Nm]	9,2	10,6	14,2	27,2	45,9
Parametro caratteristico di resistenza ad estrazione ⁽²⁾	f _{ax,k}	[N/mm ²]	11,7	11,7	11,7	11,7	11,7
Densità associata	ρ_{a}	[kg/m³]	350	350	350	350	350
Parametro caratteristico di resistenza ad estrazione ⁽³⁾	$f_{ax,k}$	[N/mm ²]	15,0	15,0	15,0	15,0	15,0
Densità associata	ρ_a	[kg/m³]	500	500	500	500	500
Resistenza caratteristica a trazione	f _{tens,k}	[kN]	11,0	12,3	15,4	25,4	38,0
Resistenza caratteristica a snervamento	$f_{y,k}$	[N/mm ²]	1000	1000	1000	1000	1000

VGS

CONNETTORE TUTTO FILETTO A TESTA SVASATA O ESAGONALE

GEOMETRIA E CARATTERISTICHE MECCANICHE

Diametro nominale	d ₁	[mm]	9	11 [L ≤ 600 mm]	11 [L > 600 mm]	13 [L ≤ 600 mm]	13 [L > 600 mm]
Diametro testa	d_{K}	[mm]	16,00	19,30	-	22,00	-
Misura chiave	SW		-	-	SW17	-	SW19
Spessore testa	t ₁	[mm]	6,50	8,20	6,40	9,40	7,50
Diametro nocciolo	d_2	[mm]	5,90	6,60		8,00	
Diametro preforo ⁽¹⁾	d_V	[mm]	5,0	6,0		8,0	
Momento caratteristico di snervamento	M . [Nm] 272 459		5,9	70,9			
Parametro caratteristico di resistenza ad estrazione ⁽²⁾	f _{ax,k}	[N/mm ²]	11,7	11,7		11,7	
Densità associata	ρ_a	[kg/m ³]	350	350		350,0	
Resistenza caratteristica a trazione	f _{tens,k}	[kN]	25,4	38,0		53,0	
Resistenza caratteristica a snervamento	f _{y,k}	[N/mm ²]	1000	1000		10	00